Serge Massar Université Libre de Bruxelles

Plan

- Why Quantum Communication?
- Prepare and Measure schemes
 - QKD
- Using Entanglement
- Teleportation
- Communication Complexity
- And now what?

Talk: Theoretical Concepts & Illustrative Experiments

Why?

How?

Why? How?

- Quantum Crypto
 - Q. Key Distribution
 - Other protocols
 - Coin Tossing, etc...
- Communication
 Complexity
- Foundations of Physics

Why?

- Quantum Crypto
 - Q. Key Distribution
 - Other protocols
 - Coin Tossing, etc...
- Communication Complexity
- Foundations of Physics

How?

Photons

$$\vec{E}(\vec{x},t) = A\vec{u}\cos\left[\omega t - \vec{k}.\vec{x} - \varphi\right]$$

- $-\vec{u}$ Polarization
- ∞,t Frequency/Energy
- $-\vec{k}$, \vec{x} Momentum/Position
- $-A, \varphi$ Amplitude/Phase
- Wavelength
 - Visible: Free Space
 - − Near IR: fiber optics $\lambda \approx 1.5 \mu m$

- Protocols in which a single qubit is
 - Prepared
 - Sent
 - Measured

Alice Eve Bob

Alice and Bob want to share a secret key

$$r_1 r_2 r_3 ... r_N \in \{0, 1\}$$
 $r_1 r_2 r_3 ... r_N$

Alice Eve Bob

Alice and Bob want to share a secret key

$$r_1 r_2 r_3 ... r_N \in \{0, 1\}$$
 $r_1 r_2 r_3 ... r_N$

- Eve should not learn the key
- If Eve tries to learn the key, she is detected

Alice Eve Bob

Alice and Bob want to share a secret key

$$r_1 r_2 r_3 ... r_N \in \{0, 1\}$$
 $r_1 r_2 r_3 ... r_N$

- Eve should not learn the key
- If Eve tries to learn the key, she is detected

Use quantum communication
& uncertainty principle / no cloning theorem

QKD

If Alice prepares:
 two orthogonal states

If Bob measures:
 in basis

$$|0\rangle \pm e^{i\varphi} |1\rangle$$
 Send to Bob $|0\rangle \pm e^{i\varphi} |1\rangle$

 Then Bob learns which state was prepared by Alice

QKD

If Alice prepares:
 two orthogonal states

If Bob measures:
 in basis

$$|0\rangle \pm e^{i\varphi} |1\rangle$$
 Send to Bob $|0\rangle \pm e^{i\varphi} |1\rangle$

 Then Bob learns which state was prepared by Alice

!!!But Eve can also learn the state by Measuring in same basis!!!

QKD: Trick

Alice randomly prepares

Bob randomly measures in

bit=0,1
$$|0\rangle \pm |1\rangle$$
Send to Bob
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
Send to Bob
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
Send to Bob
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
Send to Bob

Now Eve is stymied.

In which basis to measure?

!!If she learns information, she disturbs the state!!

QKD: Trick

Alice randomly prepares

Bob randomly measures in

bit=0,1
$$|0\rangle \pm |1\rangle$$
Send to Bob
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
Send to Bob
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
Send to Bob
 $|0\rangle \pm i|1\rangle$
 $|0\rangle \pm i|1\rangle$
Send to Bob

Now Eve is stymied.
In which basis to measure?
!!If she learns information, she disturbs the state!!

Alice and Bob can obtain a secret key by revealing publicly at a later stage the basis used. If the basis are the same, the prepared and measured state constitute the secret key.

QKD: Example

Emission φ	0°	90°	180°	90°	0°	270°	180°	0°	90°
Bit Sent	0	0	1	0	0	1	1	0	0
Mst Basis	90°	90°	0°	90°	0°	0°	0°	90°	0°
Mst Result	1	0	1	0	0	1	1	1	0
Key	X	0	1	0	0	X	1	X	X

QKD needs single photon states

- In practice: Attenuated coherent states
 - « The poor man's single photon source »

$$|\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \approx \left(1 - \frac{|\alpha|^2}{2}\right) |0\rangle + \alpha |1\rangle + \dots$$

First QKD Experiment

Propagation distance: 30cm

Key rate ≈ 1 bit/s

Journal of Cryptology 5, 3-28 (1992)

Quantum Cryptography Today

- •Key distribution over 50km of optical fiber
- Secret key rate: 1Mbit/s
- Continuous operation for 36hours
- •Technique used: time bins

A. R. Dixon et al., Applied Physics Letters, 96, 161102 (2010)

FIG. 1. Schematic of QKD system. IM denotes fiber intensity modulator, PM phase modulator, A attenuator, M optical power meter, EPC electrically-driven polarization controller, FS fiber stretcher, D InGaAs APD detectors. Components in green are feedback-controlled as part of the active stabilization system. Experiments with entangled photons

Experiments with entangled photons

Why?

- Q. Comm. Over longer distances:
 - Slightly further than prepare and measure schemes
 - First step towards quantum repeaters
- Fundamental test of Nature:
 - Quantum Non Locality
 - Device Independent Quantum Cryptography

Non Locality: Aspect type experiment

P(ab|XY) = P(A outcome & B outcome | A mst setting & B mst setting)

Implications of Non Locality

Local Hidden Variable Model

$$P(ab \mid xy) = \int d\lambda P(\lambda) P(a \mid x\lambda) P(b \mid y\lambda)$$

If a lhv description is possible, P(ab|xy) satisfies all Bell inequalities

•local deterministic description of measurements is possible

If lhv description is impossible: (Quantum) Non Locality

- •measurements results are random, must be secret
- detected by Bell inequality violation

Experiments with entangled particles

Equivalence with remote state preparation Equivalence with prepare and measure

Equivalences between schemes

Entangled Photon source

Frequency Doubling

Parametric Down Conversion

$$\omega_1$$
 ω_2

 $ω_1 + ω_2 = 2ω$: Energy Conservation (approximate) Momentum Conservation (Phase Matching Condition)

Frequency Entanglement

Nature Physics 3, 481 - 486 (2007)

35 coincidences / s

Quantum Teleportation

Entanglement Swapping

Bell State Measurement with Photons

$$\left|\psi\right\rangle = \left(\alpha a_1^{\dagger} b_1^{\dagger} + \beta a_2^{\dagger} b_1^{\dagger} + \gamma a_1^{\dagger} b_2^{\dagger} + \delta a_2^{\dagger} b_2^{\dagger}\right) \left|0\right\rangle$$

Two photons

Two modes in beam a

Two modes in beam b

Coincident detection in both detectors implies that initial state was

$$\left|\psi\right\rangle = \left(\frac{1}{\sqrt{2}}a_1^{\dagger}b_2^{\dagger} - \frac{1}{\sqrt{2}}a_2^{\dagger}b_1^{\dagger}\right)\left|0\right\rangle$$

With probability 1/4 one measures a Bell sta

Experimental Quantum Teleportation.
Telecomunication Wavelengths
distance 55m, passing through a spool of 2km optical fiber

Nature **421**, 509-513 (2003)

Quantum Communication with atoms and photons.

Entanglement of two Yb+ ions

- ➤ Situated in 2 separate vacuum chambers separated by 1m
- **>1** event every 10 minutes

Advantages:

- > Information can be stored
- > Interfacable with quantum computer
- Detection loophole closed.

Quantum Communication with atoms and photons.

Entanglement of two Yb+ ions

- ➤ Situated in 2 separate vacuum chambers separated by 1m
- **≻1 event every 10 minutes**

Advantages:

- Information can be stored
- > Interfacable with quantum computer
- > Detection loophole closed.

Quantum Communication Complexity

TASK:Minimum Communication to provide the correct output

Quantum Communication Complexity

TASK: Minimum Communication to provide the correct output

Example: Equality

Example: Equality

- No Error:
 - n cbits of communication required
- Small Error probability & shared randomness
 - Log(n) cbits of communication required
- Deutsch-Jozsa setting: either x=y or x differs from y in exactly n/2 positions
 - O(0.007n) cbits required
 - Log(n) qubits required
 - Log(n) ebits + Log(n) cbits

Example: Sum mod 2π

- Bounded Error: requires O(n Log(n)) cbits
- n qubits
- 1GHZ state + n cbits

Experimental Realisation of Sum mod 2π

Conclusion The future of Quantum Communication

- Faster
 - Better detectors
- Further
 - Via satellite (?)
 - Repeaters
- Interfacing with stationary qubits
 - Quantum memories for light
 - Error Correction